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Abstract
Recent developments in big data applications have heightened the need for understanding and processing high-dimensional
data. It is necessary to extract some excellent features that effect the learning performance in high-dimensional data. Feature
selection algorithm based on rough set theory as an important preprocessing method has been widely used in practical
applications. Meanwhile, it should be noted that different attributes have different effects on model evaluation. Nevertheless,
each feature or attribute has the same degree of importance in the interval-valued information system by using rough set
models, ignoring the imbalance between features. Moreover, the monotonic classification effect of interval-valued data is
easily affected by noise. For these two issues, we introduce different weights into neighborhood relations and propose a
novel approach for feature selection-based weighted neighborhood rough sets for interval-valued information systems in this
study. First, weighted neighborhood relations and some important properties are proposed by considering different attribute
weights in the interval-valued information system. Then, we construct an interval-valued-based weighted neighborhood
rough set (IVWNRS) model to solve the contradiction between the degree of dependency and the classification ability of the
attribute subset. Furthermore, a heuristic algorithm is designed according to the degree of dependency to select an attribute
subset that has both strong correlation and high dependency. Finally, we compare it with six other representative feature
selection algorithms on fifteen public datasets to evaluate the performance of the proposed algorithm. Experimental results
on different classifiers show that the IVWNRS algorithm has higher classification performance and is significantly effective.

Keywords Degree of dependency · Feature selection · Interval-valued · Information systems ·
Weighted neighborhood rough set

1 Introduction

Rough set theory, proposed by Pawlak [26] in 1982, has
been widely used in machine learning, knowledge discov-
ery, and approximate reasoning. Limited to strict equiv-
alence relations, the classical Pawlak rough set can only
deal with information systems with categorical attributes.
Faced with complex surroundings, different types of data
become more common. Naturally, intervals appear to be
a method for describing uncertainty, such as temperature
changes and blood pressure, and have received intense
attention. To mine knowledge under the circumstance of
uncertainty, such as interval values in information systems,
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some scholars have introduced neighborhood relations and
fuzzy relations into Pawlak rough sets, which have formed
interval-valued-based neighborhood rough sets [5, 21, 29,
46] and interval-valued-based fuzzy rough sets [14, 31],
respectively. Similar to the Pawlak rough set, the aforemen-
tioned generalized rough set models are applied to feature
selection [2, 11, 35, 39, 48, 49], rule extraction [1, 27, 28],
dynamic learning [11, 24] and other fields.

Studies focus on fuzzy rough sets and neighborhood
rough sets in interval-valued datasets. Different from
interval-valued-based neighborhood rough sets, interval-
valued-based fuzzy rough sets can quantify information.
However, full use is rarely made of primitive information
because the imbalance of data leads to partial information
being employed rather than the complete information
being employed. Even inappropriate binary relations are
further introduced into the fuzzy decision information
system. Questions such as these have hindered more logical
and objective research. Contrary to fuzzy rough sets,
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similarity relations in neighborhood rough sets measure
any two objects without considering the effect of a third
object, which has more extensive applications in real life.
Therefore, the similarity relations in interval-valued based
neighborhood rough sets are considered.

As an imperative part of rough set theory, feature selec-
tion always causes heated discussion. Generally, feature
selection has the following framework: for a set of all
attributes A, and B ⊆ A, B can be regarded as one selected
feature subset if the constraints are satisfied

(1)B satisf ies the ρ − constraint;
(2)∀ C ⊂ B does not satisfy the ρ − constraint .

Different feature selection evaluation approaches are deter-
mined by different ρ − constraints. Based on such basic
construction, different scholars measure the feature subset
with different methods [37, 38, 41, 45]. To make feature
selection more suitable for neighborhood rough sets, issues
such as the choice of parameters [51] controlling the size
of information granules, running time [18, 32], incremental
learning [30] and other fields have been explored. Unfortu-
nately, the effectiveness of these approaches is weakened in
interval-valued neighborhood rough sets. Through our fur-
ther study [3, 7, 12, 13, 16, 23, 34], such situations can be
ascribed to their overlooking attribute importance. Without
assigning weights to attributes, attributes highly correlated
with decisions have the same probability of being selected
as common attributes. Such problems may not be evident in
the training stage, but it generally shows poor generaliza-
tion ability during the testing period. Moreover, in terms of
time complexity, appropriate attribute weights can save run-
ning time of searching one feature subset [7]. Consequently,
weighting attributes requires consideration.

After analyzing the process of obtaining one feature
subset in interval-valued-based data from the perspective
of binary relations and the attribute weights, we define
a new model, namely, the interval-valued-based weighted
neighborhood rough set (IVWNRS), to search one valuable
feature subset by taking advantage of all data information.
To attain one feature subset, we first calculate the
correlation between attributes and decisions, and the
significance of attributes highly relevant to decisions are
improved; then, one minimal feature subset can be selected
based on similarity relations by comprehensively using the
data information. The flow of the methodology used is
displayed in Fig. 1.

Inspired by above analysis, we try to design a feature
selection algorithm for high-dimensional interval-valued
data to obtain important features to improve the perfor-
mance of learning model. Compared with the existing
methods, the IVWNRS model could solve the imbalance in
different features and the contradiction between the degree

of dependency and the classification ability of feature
subset. Thus, the proposed approach based on IVWNRS
can comprehensively evaluate the features and improve
the object classification performance in high-dimensional
interval-valued data. The main contributions of our research
can be summarized as follows.

• We proposed a feature selection algorithm for high-
dimensional interval-valued based on interval-valued-
based weighted neighborhood rough set model, which
could depict the importance of features in more detail.
Compared with some existing methods, this approach
could select excellent features that have better object
classification performance.

• The defined IVWNRS model is based on weighted
neighborhood relation, which provides a way for
dealing with interval-valued data. Meanwhile, the
IVWNRSmodel focuses on solving the imbalance issue
in different features and the contradiction between the
degree of dependency and the classification ability, so
as to improve its ability to describe uncertainty and
better evaluation selection features.

• Moreover, a heuristic algorithm is designed according
to the degree of dependency to select an attribute subset
that has both strong correlation and high dependency
according to the degree of dependency. All the exper-
imental results demonstrate that our method has better
classification performance than some state-of-the-art
feature selection methods in interval-valued data.

The rest of this paper is organized as follows. In
Section 2, related works are presented in more detail.
In Section 3, we briefly review the basic concept of
neighborhood rough sets and interval-valued-based decision
information systems. To process interval-valued data, we
propose a new model named interval-valued-based neigh-
borhood rough sets without weighted attributes and find
that the dependency of attribute subsets contradicts its per-
formance. In Section 4, an interval-valued-based weighted
neighborhood rough set is further presented to solve the
defect, and a measure of evaluating attributes is proposed.
In Section 5, we design a heuristic algorithm to find a reduct
in an interval-value-based decision information system. In
Section 6, we use fifteen datasets to compare the proposed
model with the advanced feature selection methods from
two different aspects. In Section 7, we summarize the paper
and propose a vision for the future.

2 Related works

In the introduction, the information of different studies were
omitted, they are described in detail in this section.
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Fig. 1 The process of obtaining
one feature subset

Based on neighborhood similarity relations, neighbor-
hood rough sets can handle information systems with
interval-valued attributes, and several researchers have done
significant work. Sang et al. [29] studied incremental feature
selection approaches based on a fuzzy dominance neigh-
borhood rough set (FDNRS) for dynamic interval-valued
ordered data. Yang et al. [46] introduced a novel fuzzy
neighborhood rough set model and found that its matrix
representation was suitable for quantifying the similarity
relations in interval-valued information systems with fuzzy
decisions (IvIS FD). Considering that the existing rough
set models neglect the test cost and misclassification cost
in the data, Liu et al. [21] proposed a feature selection
approach based on the cost sensitivity for interval-valued
data after designing the cost-sensitive function. Inspired by
the importance of the positive region, Chen et al. [5] used
the similarity measure between interval numbers to estab-
lish the neighborhood and then constructed a rough set
model based on the neighborhood. For information fusion,
Huang et al. [14] used a novel data fusion method based
on fuzzy information granulation, which translated multi-
source interval-valued data into trapezoidal fuzzy granules.
The intuitive comparison can be found in Table 1. Unfor-
tunately, although the above neighborhood-based rough set
models deal with interval values from different aspects, they
all ignore the importance of attribute weights. However,
in daily routines, the significance of different attributes is
usually different. In this case, we have to distinguish one
attribute from the left, that is, assigning different weights
to different attributes. Furthermore, if we consider internal

relevance between condition attributes and decisions ahead
of time, we can place more emphasis on the attributes that
are highly related to decisions, which paves the way for
selecting attribute subsets with relatively high correlation
and dependency.

The weight of an attribute stresses its importance. Since
the weight of an attribute plays an important role in fea-
ture selection, some scholars have studied how to assign
attribute weights in Pawlak rough sets, fuzzy rough sets,
and decision-theoretic rough sets. To handle multiindividual
participation and mutual compensation among risk factors,
Luo et al. [23] proposed a methodology based on weighted
multigranulation fuzzy rough sets (MGFRSs) over two uni-
verses to perform risk evaluation for PPP WTE incineration
plant projects. Vluymans et al. [34] presented a strategy for
selecting a suitable weighting scheme for ordered weighted
average-based fuzzy rough sets in general. Facing the prob-
lem of high time consumption on large-scale datasets in
classical reduction algorithms in fuzzy rough sets, Fan et al.
[7] introduced weights into the concept of feature selection
and built an optimization problem to find weights. In addi-
tion to the difference in the importance of different gran-
ulations in multisource systems, Guo et al. [12] provided
a weighted generalized multigranulation interval-valued
decision-theoretic rough set model (WGM-IVDTRS) for
multisource decision fusion. Other methods for determining
attribute weights can be found in [3, 13, 16].

Feature selection aims to select one minimal feature
subset with important information after eliminating redun-
dant and inconsistent attributes. Based on Pawlak rough
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Table 1 Summary of
interval-valued-based
generalized rough sets

Fuzzy rough sets Neighborhood rough sets

Interval-valued attributes Huang et al. [14] Sun et al. [31] Chen et al. [5] Liu et al. [21]

Sang et al. [29] Yang et al. [46]

sets, state-of-the-art feature selection methods have been
expanded to several fields, including fuzzy rough sets,
neighborhood rough sets and decision-theoretic rough sets.
Different from classical Pawlak rough sets, fuzzy rough sets
can handle continuous attributes, and neighborhood rough
sets can be used to deal with both continuous and categori-
cal attributes. Thus, neighborhood rough sets have intrigued
many authors for their wide application range. To date,
there have been many feature selection approaches based on
neighborhood knowledge. Wang et al. [38] proposed deci-
sion self-information for feature selection considering the
uncertainty information in lower and upper approximations.
Without any domain knowledge or specifying any parame-
ters in advance, Zhou et al. [51] defined a new neighborhood
rough set relation with adapted neighbors and proposed a
new online streaming feature selection method based on
this relation. The neighborhood discrimination index, char-
acterizing the distinguishing information of a neighborhood
relation, was defined by Wang et al. [37] to select one
feature subset. To better describe the neighborhoods of
category-mixed samples, Wang et al. [41] proposed a new
model combining the advantages of the δ-neighborhood and
k-nearest-neighbor for feature selection. Adapted for mutual
information on continuous features and multiple labels,
Gonzalez-Lopez et al. [10] proposed a distributed model.
Since it is difficult to determine the neighborhood radius,
Yang et al. [45] presented a pseudo label neighborhood rela-
tion to reduce the uncertainties in feature selection, where
samples can be differentiated by not only distance but also
the sample pseudo labels. In addition to the neighborhood
radius defect, time complexity remains an issue, so Jiang
et al. [18] designed an accelerator to speed up the process of
obtaining features with better discriminating performance
in supervised neighborhoods. Similarly, Sun et al. [32] pro-
posed a novel feature selection method using the Fisher
score and multilabel neighborhood rough sets (MNRS) in
multilabel neighborhood decision systems to decrease run-
ning time while determining an appropriate neighborhood
radius. In incremental learning, Sang et al. [30] intro-
duced conditional entropy into neighborhood rough sets
and proposed an incremental feature selection approach for
dynamic ordered data based on this model. Obviously, far
more feature selection methods exist than the abovemen-
tioned model; other feature selection methods can be found
in [3, 4, 20, 22, 25, 36, 40, 42, 44]. For convenience, the
studies based on different feature selection methods are
displayed in Table 2.

3 Preliminaries

3.1 Classical neighborhood rough set theory

A five-tuple IS = (U, AT ∪ DT, F, G) is called a decision
information system, where the universe U = {x1, x2,
· · · , xn} is a nonempty finite set of objects, AT = {a1, a2,
· · · , am} is a nonempty finite set of conditional attributes,
DT = {d1, d2, · · · , dr} is a nonempty finite set of decision
attributes, F is the relation from U to Va satisfying F =
{f : U → Va}, andG is the relation fromU to Vd satisfying
G = {f : U → Vd}. What needs to be noted is that Va and
Vd denote the real domains of conditional attribute a and
decision attribute d , respectively.

Given a decision information system IS = (U, AT ∪
DT, F, G), U/DT = {D1, D2, · · · , Ds} makes up a
partition on U to DT .

In a given decision information system IS =
(U, AT ∪ DT, F, G), for any x ∈ U, B ⊆ AT , the neigh-
borhood similarity class of x under the conditional attribute
subset B is defined as

NSδ
B(x) = {y|dB(x, y) ≤ δ}. (1)

where dB denotes the distance function under subset B

and the neighborhood threshold δ (δ > 0). The function
Dis : U × U → R+ can serve as a distance function if the
function Dis satisfies the following properties:

(1) for any x, y ∈ U, Dis(x, y) ≥ 0, Dis(x, y) = 0 if
and only if x = y;

(2) for any x, y ∈ U, Dis(x, y) = Dis(y, x);
(3) for any x, y, z ∈ U, Dis(x, z) ≤ Dis(x, y) +

Dis(y, z).

In a given decision information system IS = (U, AT ∪
DT, F, G), δ is set to a fixed value; for any X ⊆ U, B ⊆
AT , the lower and upper approximations of X with respect
to B are, respectively defined as

RNSδ
B(X) = {x ∈ U |NSδ

B(x) ⊆ X},
RNS

δ

B(X) = {x ∈ U |NSδ
B(x) ∩ X �= ∅}. (2)

Analogously, according to formula (2), the lower and
upper approximations of DT with respect to B are defined
as

RNSδ
B(DT ) = ∪s

i=1RNSδ
B(Di),

RNS
δ

B(DT ) = ∪s
i=1RNS

δ

B(Di). (3)
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Table 2 Summary of feature selection in generalized rough sets

Fuzzy rough sets Neighborhood rough sets Decision-theoretic rough sets

Without weighted Wan et al. [35] Wang et al. [39] Chen et al. [2] Chen et al.[3] Guo et al. [11]

Method Zhang et al. [48] Zhang et al. [49] Chen et al. [4] Fu et al. [9]

Jiang et al. [18] Liang et al. [20]

Liu et al. [22] Mariello et al. [25]

Sang et al. [30] Sun et al. [32]

Wang et al. [36] Wang et al. [37]

Wang et al. [38] Wang et al. [40]

Wang et al. [41] Yang et al. [44]

Yang et al. [45] Zhou et al. [51]

With weighted Fan et al. [7] Hashemzadeh et al. [13] Chen et al. [3] Huang et al. [16] Guo et al. [12]

Method Luo et al. [23] Vluymans et al. [34]

where U/DT = {D1, D2, · · · , Ds}. The boundary and
positive regions of DT with respect to B are defined as

BNDδ
B(DT ) = RNS

δ

B(DT ) − RNSδ
B(DT ),

POSδ
B(DT ) = RNSδ

B(DT ). (4)

Furthermore, the dependency degree of DT with respect
to B in the decision information system IS = (U, AT ∪
DT, F, G) is described as

γ δ
B(DT ) = |POSδ

B(DT )|
|U | . (5)

where | · | represents the cardinality of set s. γ δ
B(DT ) is used

to measure the ability of conditional attribute subset B to
approximate DT . The larger the value of γ δ

B(DT ) has, the
stronger the approximation ability of the attribute subset B

is.

3.2 Interval-valued-based decision information
system and neighborhood rough set

A five-tuple IV IS = (U, AT ∪ DT, F, G) is called an
interval-valued decision information system when it is a
special case of a decision information system with interval-
valued attributes. Particularly, F is the relation from U to
Va satisfying F = {f : U → Va}, where Va is interval
number. That is, for any a ∈ AT, x ∈ U , the value of
the object x under the conditional attribute a is denoted as
f (x, a) = [x−

a , x+
a ](x−

a , x+
a ∈ R and x−

a ≤ x+
a ).

Considering that Euclidean distance in classical neigh-
borhood rough sets cannot deal with interval numbers,
Jaccard distance can be another choice. Given the two sets
A and B, the difference between them can be described as

dJ(A,B) = 1 − |A ∩ B|
|A ∪ B| . (6)

Now that the Jaccard distance can measure the difference
between the two sets, it can naturally generalize to interval

values. Assuming that a = [a−, a+] and b = [b−, b+]
are two intervals, the Jaccard distances between them are
defined as

dJ(a,b) = 1 − |a ∩ b|
|a ∪ b| . (7)

where |·| represents the length of the interval, namely |a∩b|
represents the length of the intersection of the interval a and
b, and |a∪b| represents the length of the union of the interval
a and b.

In a given interval-valued decision information system
IV IS = (U, AT ∪ DT, F, G), for any x ∈ U, B ⊆ AT ,
the interval-valued neighborhood similarity class of x under
the conditional attribute subset B is defined as

IV Sδ
B(x) = {y|dB

J (x, y) ≤ δ}. (8)

Here, dB
J (x, y) is the Jaccard distance between objects x and

y with respect to B in an interval-valued environment.
In a given interval-valued decision information system

IS = (U, AT ∪ DT, F, G), δ is set to a fixed value; for any
X ⊆ U, B ⊆ AT , the lower and upper approximations of X

with respect to B are, respectively defined as

IV Rδ
B(X) = {x ∈ U |IV Sδ

B(x) ⊆ X},
IV R

δ

B(X) = {x ∈ U |IV Sδ
B(x) ∩ X �= ∅}. (9)

Analogously, according to formula (9), the lower and
upper approximations of DT with respect to B are, respec-
tively defined as

IV Rδ
B(DT ) = ∪s

i=1IV Rδ
B(Di),

IV R
δ

B(DT ) = ∪s
i=1IV R

δ

B(Di). (10)

where U/DT = {D1, D2, · · · , Ds}. The boundary and
positive regions of DT with respect to B are defined as

BNDδ
B(DT ) = IV R

δ

B(DT ) − IV Rδ
B(DT ),

POSδ
B(DT ) = IV Rδ

B(DT ). (11)
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Furthermore, the dependency degree of DT with respect to
B in the interval-valued decision information system IS =
(U, AT ∪ DT, F, G) is described as

γ δ
B(DT ) = |POSδ

B(DT )|
|U | . (12)

Next, we use an example to illustrate the proposed
interval-valued-based neighborhood rough set theory.

Example 1 A given interval-valued decision information
system IS = (U, AT ∪ DT, F, G) can be seen in
Table 3, where the universe is U = {x1, x2, · · · , x14},
and the conditional and decision attribute sets are AT =
{a1, a2, a3, a4, a5, a6, a7} and DT = {d}. A partition on
U to d is {{x1, x2, x3, x4, x5, x6, x7}, {x8, x9, x10, x11, x12,
x13, x14}}.

Given two conditional attribute subsets B1 = {a1, a3},
B2 = {a1, a5} and a neighborhood threshold δ = 0.2, the
generated neighborhood similarity classes induced by B1

and B2 are shown in Table 4. According to the definition
of dependency degree and the result in Table 4, we cal-
culate that γ δ

B1
(DT ) = 1 and γ δ

B2
(DT ) = 1. Based on

the above theory, the ability of B1 to approximate DT is
the same as that of B2. However, there is a contradiction
between the theory of dependency degree and the result of
the k−nearest-neighbor (KNN) classifier with k ruled 3.
The detailed results of two conditional attribute subsets with
the KNN classifier are shown in Fig. 2. If not otherwise
specified, in this paper, we transform f (x, a)(∀x ∈ U, ∀a ∈

Table 3 An interval-valued decision information system

U a1 a2 a3 a4 a5 a6 a7 d

x1 [27806,33596] [1370,1910] [185,211] [254,254] [406,406] [171,171] [143,143] 1

x2 [27492,34092] [1596,1753] [185,193] [262,262] [415,415] [170,170] [143,143] 1

x3 [19229,30885] [1242,1910] [155,170] [246,246] [380,384] [166,166] [148,148] 1

x4 [19242,24742] [1242,1753] [167,167] [245,245] [383,383] [163,163] [132,132] 1

x5 [19837,29034] [1242,1242] [158,174] [238,238] [372,372] [169,169] [144,144] 1

x6 [16992,23492] [1149,1149] [151,168] [235,235] [343,343] [163,163] [142,142] 1

x7 [24192,33042] [1119,1994] [160,185] [251,251] [399,399] [169,169] [142,142] 1

x8 [41593,62291] [1598,2492] [200,227] [260,260] [443,443] [175,175] [142,142] 2

x9 [68216,140265] [1781,4172] [216,250] [276,276] [480,480] [181,181] [145,145] 2

x10 [45407,76392] [1796,2979] [201,247] [273,273] [447,447] [174,174] [142,142] 2

x11 [50490,65399] [1796,2497] [195,210] [275,275] [475,475] [178,178] [143,143] 2

x12 [27419,48679] [1585,1896] [190,191] [251,251] [452,452] [173,173] [143,143] 2

x13 [36492,49092] [1585,2171] [193,207] [264,264] [450,450] [171,171] [143,143] 2

x14 [39676,63455] [1595,2496] [192,220] [270,270] [470,470] [175,175] [146,146] 2

Table 4 Interval-valued neighborhood similarity class induced by
{a1, a3} and {a1, a5}
U IV S0.2{a1,a3}(x) IV S0.2{a1,a5}(x)

x1 {x1} {x1}
x2 {x2} {x2}
x3 {x3} {x3}
x4 {x4} {x4}
x5 {x5} {x5}
x6 {x6} {x6}
x7 {x7} {x7}
x8 {x8} {x8}
x9 {x9} {x9}
x10 {x10} {x10}
x11 {x11} {x11}
x12 {x12} {x12}
x13 {x13} {x13}
x14 {x14} {x14}

AT ) into real forms Gη(f (x, a)) = (λ−)1−η(λ+)η by the
geometry average interval sorting method [50] to obtain
the classification result under different classifiers. In Fig. 2,
we can see that under subsetB1, one sample is misclassified,
while under subset B2, none of the samples are classi-
fied incorrectly. A similar situation occurs to SVM as well.
Therefore, it is limited to using dependency degree with
attributes treated equally in interval-valued-based neighbor-
hood rough sets. Therefore, in the following, a new model
based on the interval-valued-based neighborhood rough set
is proposed to solve this defect.
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Fig. 2 Classification result under KNN and SVM

4 Interval-valued-based weighted
neighborhood rough set

Through in-depth research, we find that different attributes
have different significance for decision attributes. Ignoring
such a difference will lead to attribute subsets with lower
classification ability having a larger value of dependency
degree, which is the problem with an interval-valued-based
neighborhood rough set. In this part, a new rough set model
named the interval-valued-based weighted neighborhood
rough set is proposed to solve the aforementioned issue.

Given an interval-valued decision information system
IS = (U, AT ∪ DT, F, G), ∀x ∈ U, a ∈ AT , f (x, a) =
[x−

a , x+
a ] is the interval value of sample x with respect

to attribute a. Considering that the correlation coefficient
between the condition attribute and the decision attribute
may be negative and multiplying the interval value by a
negative number reverses its upper and lower bounds, e.g.,
−5 × [1, 2] = [−10, 5], converting the interval value to a
real number becomes a necessity. Here, we still choose the
geometry average interval sorting method. For any interval

λ = [λ−, λ+], its real number form , namely, Gη(λ) =
(λ−)1−η(λ+)η, is definite when parameter η is given.

Let the coefficient matrix be

A=

⎡
⎢⎢⎢⎣

Gη(f (x1, a1)) Gη(f (x1, a2)) · · · Gη(f (x1, am))

Gη(f (x2, a1)) Gη(f (x2, a2)) · · · Gη(f (x2, am))
...

...
. . .

...
Gη(f (xn, a1)) Gη(f (xn, a2)) · · · Gη(f (xn, am))

⎤
⎥⎥⎥⎦

Because the real number forms are generally different
when the parameter η is different, the matrix can be renamed
the η−degree of preference coefficient matrix. The decision
matrix is Y = (f (x1, d), f (x2, d), · · · , f (xn, d))T , and the
partition coefficients of attributes are C = (c(a1), c(a2),

· · · , c(am)T . To determine the optimal partition coefficients
of attributes, we transform the problem of seeking the optimal
coefficients into an optimization problem as follows:

C∗ = arg
C

min||AC − Y || (13)
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where || · || denotes the 2-norm of a vector. The optimal
partition coefficients C can be attained when AC = Y .
Specifically, two situations need to be considered for the
solution. When AT A is invertible, both sides of AC = Y

are multiplied by AT to obtain AT AC = AT Y . Finally, by
solving AT AC = AT Y , we can obtain

C = (AT A)−1AT Y . (14)

When AT A is not invertible, we attempt to add a penalty
term based on objective function (13); then, formula (13)
can be converted to F(C) = ||AC − Y || + ||C||2. Since
F(C) is a convex function, its minimum is obtained when
F ′(C) = 0. We can easily see that F ′(C) = 2AT (AC −
Y ) + 2C; therefore, (AT A + E)C = AT Y , where E is an
identity matrix. So

C = (AT A + E)−1AT Y . (15)

|C(a)| is the absolute value of C(a), which reflects the
relation between attribute a and decision D. The larger
|C(a)| is, the stronger the internal relevance of the attribute
and the decision. Similar to such common practice, the
attribute weighted method is designed in the following.

Definition 1 Given an interval-valued decision information
system IS = (U, AT ∪ DT, F, G), ∀ai ∈ AT , the weight
of ai is defined as

ω(ai) = |AT ||C(ai)|∑
ai∈C |C(ai)| . (16)

Proposition 1 Given an interval-valued decision informa-
tion system IS = (U, AT ∪ DT, F, G), ∀ai ∈ AT , the
weight vector with attributes ω = (ω(a1), ω(a2), · · · ,

ω(am)T , we have

(1)ω(ai) ≥ 0;

(2)
∑

ai∈AT

ω(ai) = |AT |. (17)

Proof (1) − (2) can be proved directly by Definition 1.

From formula (17), each attribute weight is assigned
by using the partition coefficients between the conditional
attributes and decision attributes. The higher the correlation
is, the higher the assigned weight of the corresponding
attribute.

Given an interval-valued decision information system
IS = (U, AT ∪ DT, F, G), ω = (ω(a1), ω(a2), · · · ,

ω(am)T is a weight vector with attributes; for attribute
subset B(B ⊆ AT ) and neighborhood threshold δ, the

weighted interval-valued neighborhood similarity relation is
defined as

WIV Sδ
B (18)

= {(x, y)|
√√√√∑

ai∈B

(ω(ai)(1− |f (x, ai) ∩ f (y, ai)|
|f (x, ai) ∪ f (y, ai)| ))

2 ≤ δ}

= {(x, y)|
√√√√∑

ai∈B

ω(ai)2(1− |f (x, ai) ∩ f (y, ai)|
|f (x, ai) ∪ f (y, ai)| )

2 ≤ δ}.

where ω(ai) is the weight of attribute ai , w(ai) ≥ 0 and∑
ai∈AT |ω(ai)|=|AT |. Compared with the interval-valued

decision information system treating the conditional attribute
weights equally, the new model takes advantage of the
significance of attributes. When ω(ai) ≥ 1, the significance
of attribute a will be increased; when 0 < ω(ai) < 1, its
significance will be decreased; when ω(ai) = 1, its signifi-
cance will remain unchanged; and when ω(ai) = 0, the cor-
responding attribute a can be removed since it seems to be
not important. Moreover, for ∀ai ∈ AT , it can be seen that
the interval-valued-based weighted neighborhood similarity
relation will degenerate to an interval-valued-based neigh-
borhood similarity relation when ω(ai) = 1. Therefore, the
interval-valued-based weighted neighborhood rough set is
a natural generalization of the interval-valued-based neigh-
borhood rough set.

Definition 2 Given an interval-valued decision information
system IS = (U, AT ∪ DT, F, G) and a weighted
neighborhood similarity relation WIV Sδ

B , δ is set to a fixed
value; for any X ⊆ U, B ⊆ AT , the lower and upper
approximations of X with respect to B are respectively
defined as

WIV Rδ
B(X) = {x ∈ U |WIV Sδ

B(x) ⊆ X},
WIV R

δ

B(X) = {x ∈ U |WIV Sδ
B(x) ∩ X �= ∅}. (19)

Analogously, according to formula (19), the lower and
upper approximations of DT with respect to the relation
WIV Sδ

B are respectively defined as

WIV Rδ
B(DT ) = ∪s

i=1WIV Rδ
B(Di),

WIV R
δ

B(DT ) = ∪s
i=1WIV R

δ

B(Di). (20)

where U/DT = {D1, D2, · · · , Ds}. The boundary and
positive regions of DT with respect to the relation WIV Sδ

B

are defined as

WBNDδ
B(DT ) = WIV R

δ

B(DT ) − WIV Rδ
B(DT ),

WPOSδ
B(DT ) = WIV Rδ

B(DT ). (21)
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The size of the boundary and positive regions reflects
the roughness of decision DT under the weighted neighbor-
hood similarity relation WIV Sδ

B from different angles. On
the one hand, from the perspective of the approximate set,
WPOSδ

B(DT ) measures the roughness of WIV Sδ
B from

the aspect of the lower approximation, and WBNDδ
B(DT )

considers both the upper and lower approximations. On the
other hand, considering classification, the samples of the
lower approximation can be classified correctly byWIV Sδ

B ,
while some samples of the upper approximation are cor-
rectly classified and others are misclassified. Therefore, the
measurement ability of the lower approximation is better
than that of the upper approximation. The relevant mea-
surement ability of the attribute subset based on the lower
approximation is as follows.

Definition 3 Given an interval-valued decision information
system IS = (U, AT ∪ DT, F, G) and a weighted
neighborhood similarity relation WIV Sδ

B , the dependency
degree of DT with respect to the relation WIV Sδ

B in
the interval-valued decision information system IS =
(U, AT ∪ DT, F, G) is described as

γ δ
B(DT ) = |WPOSδ

B(DT )|
|U | . (22)

where 0 ≤ γ δ
B(DT ) ≤ 1. γ δ

B(DT ) is used to evaluate
the ability of conditional attribute subset B to approximate
DT , where the attributes of AT have different weights.
The definition shows that the larger γ δ

B(DT ) is, the
stronger the approximation ability of Bs. Comprehensively
considering the definition of the dependency degree, we
find that there are three factors affecting the value of
γ δ
B(DT ): the neighborhood threshold δ controlling the

neighborhood granule size, the conditional attribute subset
B characterizing the samples and attribute weights. When
the attribute weights are given, γ increases with the decrease
in δ or the increase in attributes.

To understand the calculation process of the interval-
valued-based weighted neighborhood rough set and the
difference between it and the interval-valued-based neigh-
borhood rough set, we still use Example 1 to calculate
the dependency degree in the new rough set model. By
formulas (13) and (14), we obtain partition coefficients of
attributes C = (0.000004816, 0.000278600, 0.008022000,
0.015960000, 0.014120000, 0.018570000, 0.011080000)
and ω = (0.0004955,0.0286592,0.8253064,1.6420429,
1.4527331,1.9109832,1.1397797). Now that ω(a1), ω(a2)

and ω(a3) are less than 1, a1, a2 and a3 have little
significance in decision-making; ω(a4), ω(a5), ω(a6)

and ω(a7) are evidently more than 1, so they play
an indispensable role in decision-making. Under such
circumstances, we recalculate the dependency degree

of conditional attribute subsets B1 = {a1, a3} and
B2 = {a1, a5}. The interval-valued-based weighted neigh-
borhood similarity classes induced by subsets B1 and
B2 are displayed in Table 5. According to Definitions
(19), (20), (21) and (22), we obtain WPOS0.2

B1
(DT ) =

{x1, x2, x3, x4, x6, x8, x9, x10, x11, x12, x14} and WPOS0.2
B2

(DT ) = {x1, x2, x3, x4, x6, x8, x9, x10, x11, x12, x13, x14}.
Thus, we can obtain γ 0.2

B1
(DT ) = 0.93 and γ 0.2

B2
(DT ) = 1.

That is, the ability of B1 to approximate DT is less
than that of B2, which is obviously different from the
interval-valued-based neighborhood rough set. However,
the performance of the new rough set model is consistent
with the result in Fig. 2, namely, the KNN classifier with
k ruled 3. Therefore, we can conclude that the interval-
valued-based weighted neighborhood rough set can address
the issue caused by the interval-valued-based neighbor-
hood rough set. As a result, it is worth measuring the
significance of conditional attributes through dependency
degree by applying the attribute weighting method to the
interval-valued-based neighborhood rough set model.

In the next section, we give axiomatic proofs of the
relations between γ and its determining factors.

Proposition 2 Given an interval-valued decision informa-
tion system IS = (U, AT ∪ DT, F, G), for B1 ⊆ B2 ⊆
AT and a neighborhood threshold δ, we have

(1)WIV Sδ
B1

⊇ WIV Sδ
B2

;
(2)∀X ⊆ U, WIV Rδ

B1
(X) ⊆ WIV Rδ

B2
(X), WIV R

δ

B1

(X) ⊇ WIV R
δ

B2
(X);

(3)WPOSδ
B1

(DT ) ⊆ WPOSδ
B2

(DT ), γ δ
B1

(DT )

≤ γ δ
B2

(DT ). (23)

Table 5 Interval-valued-based weighted neighborhood similarity
classes induced by {a1, a3} and {a1, a5}
U WIV S0.2{a1,a3}(x) WIV S0.2{a1,a5}(x)

x1 {x1} {x1}
x2 {x2} {x2}
x3 {x3} {x3}
x4 {x4} {x4}
x5 {x5} {x5}
x6 {x6} {x6}
x7 {x7} {x7}
x8 {x8} {x8}
x9 {x9} {x9}
x10 {x10} {x10}
x11 {x11} {x11}
x12 {x12} {x12}
x13 {x1, x13} {x13}
x14 {x14} {x14}
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Proof (1) ∀x, y ∈ U, B1 ⊆ B2, from Formula (19),
we have

∑
ai∈B1

(ω(ai)(1 − |f (x,ai )∩f (y,ai )|
|f (x,ai )∪f (y,ai )| ))

2 ≤∑
ai∈B2

(ω(ai)(1 − |f (x,ai )∩f (y,ai )|
|f (x,ai )∪f (y,ai )| ))

2, so WIV Sδ
B1

⊇
WIV Sδ

B2
.

(2) for B1 ⊆ B2, ∀x ∈ U , according to (1),
there is WIV Sδ

B1
(x) ⊇ WIV Sδ

B2
(x), if x ∈

WIV Rδ
B1

(X), we have WIV Sδ
B1

(x) ⊆ X, because

WIV Sδ
B1

(x) ⊇ WIV Sδ
B2

(x), then WIV Sδ
B2

(x) ⊆ X,

from formula (19) we can obtain x ∈ WIV Rδ
B2

(X),

so WIV Rδ
B1

(X) ⊆ WIV Rδ
B2

(X); similarly, we can

obtain WIV R
δ

B1
(X) ⊇ WIV R

δ

B2
(X).

(3) According to (2) and formulas(20)-(21), WPOSδ
B1

(DT ) = ∪s
i=1WIV Rδ

B1
(Di) and WPOSδ

B2
(DT ) =

∪s
i=1WIV Rδ

B2
(Di), ∀Di ∈ U/DT , there is WIV Rδ

B1

(Di) ⊆ WIV Rδ
B2

(Di), so WPOSδ
B1

(DT ) ⊆
WPOSδ

B2
(DT ); then we have γ δ

B1
(DT ) ≤ γ δ

B2
(DT ).

Proposition 3 Given an interval-valued decision informa-
tion system IS = (U, AT ∪ DT, F, G), for B ⊆ AT and
two neighborhood thresholds δ1 and δ2 (δ1 ≤ δ2), we have

(1)WIV S
δ1
B ⊆ WIV S

δ2
B ;

(2)∀X ⊆ U, WIV R
δ1
B (X) ⊇ WIV R

δ2
B (X),

WIV R
δ1
B (X) ⊆ WIV R

δ2
B (X);

(3)WPOS
δ1
B (DT ) ⊇ WPOS

δ2
B (DT ),

γ
δ1
B (DT ) ≥ γ

δ2
B (DT ). (24)

Proof (1) Because δ1 ≤ δ2, ∀x, y ∈ U , if√∑
ai∈B(ω(ai)(1 − |f (x,ai )∩f (y,ai )|

|f (x,ai )∪f (y,ai )| ))
2 ≤ δ1}, then√∑

ai∈B(ω(ai)(1 − |f (x,ai )∩f (y,ai )|
|f (x,ai )∪f (y,ai )| ))

2 ≤ δ2}, so

WIV S
δ1
B ⊆ WIV S

δ2
B .

(2) According to δ1 ≤ δ2 and (1), there is
WIV S

δ1
B (x) ⊆ WIV S

δ2
B (x), if x ∈ WIV R

δ2
B (X),

we obtain WIV S
δ2
B (x) ⊆ X, and then

WIV S
δ1
B (x) ⊆ X; therefore, x ∈ WIV R

δ1
B (X),

so WIV R
δ1
B (X) ⊇ WIV R

δ2
B (X); similarly, we can

obtain WIV R
δ1
B (X) ⊆ WIV R

δ2
B (X).

(3) According to (2) and formula (20)-(21), WPOS
δ1
B

(DT ) = ∪s
i=1WIV R

δ1
B (Di) and WPOS

δ2
B (DT ) =

∪s
i=1WIV R

δ2
B (Di), ∀Di ∈ U/DT , there is

WIV R
δ1
B (Di) ⊇ WIV R

δ2
B (Di), so WPOS

δ1
B (DT ) ⊇

WPOS
δ2
B (DT ); then, we have γ

δ1
B (DT ) ≥ γ

δ2
B

(DT ).

5 Feature selection in the interval-valued
decision information systems based
weighted neighborhood rough set

In Section 4, we are committed to investigating the mechanics
of the interval-valued-based weighted neighborhood rough
set. Furthermore, in this section, we settle corresponding
feature selection issues based on this new rough set model.

Definition 4 Given an interval-valued decision information
system IS = (U, AT ∪ DT, F, G), a neighborhood
threshold δ, an attribute subset B ⊆ AT and an attribute
ai ∈ B, ai is the redundant attribute ofB with respect toDT

if γ δ
B−{ai }(DT ) = γ δ

B(DT ), and ai is the necessary attribute

of B with respect to DT if γ δ
B−{ai }(DT ) < γ δ

B(DT ).
Under this circumstance, the conditional subsetB is a reduct
of AT relative to DT when the following constraints are
established:

(1)γ δ
B(DT ) = γ δ

AT (DT );
(2)∀ai ∈ B, γ δ

B−{ai }(DT ) < γ δ
B(DT ). (25)

From the above discussion, the dependency degree of
the interval-valued-based weighted neighborhood similarity
relation can serve as an evaluation metric of the significance
of conditional attribute subsets. Its ability to distinguish
samples from different decisions increases with the
increasing dependency degree. Following Definition 4,
for any interval-valued decision information system with
m conditional attributes, there are a total of 2m − 1
suspected attribute subsets needing verification. Evidently,
it is unrealistic to calculate the dependency degree of
each candidate attribute subset one by one. Hence, several
strategies for finding a reduct, such as genetic algorithm,
branch and bound, and greedy search, have been proposed
to save time. In this paper, a greedy search algorithm is
chosen as the strategy to find one optimal attribute subset.
Before that, two measures to evaluate the significance of
an attribute relative to an attribute subset are defined to
construct the greedy search algorithm.

Definition 5 Given an interval-valued decision information
system IS = (U, AT ∪ DT, F, G), a neighborhood
threshold δ, an attribute subset B ⊆ AT and an attribute
ai ∈ B, the internal significance of ai relative to B under
DT is defined as

INS(ai, B, DT ) = γ δ
B(DT ) − γ δ

B−{ai }(DT ). (26)

Obviously, according to formulas (22) and (23), we have
0 ≤ INS(ai, B, DT ) ≤ 1. ai is not an internal necessary
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attribute relative to B if INS(ai, B, DT ) = 0; then, ai can
be removed from B. In addition, ai is an internal necessary
attribute relative to B if INS(ai, B, DT ) > 0,

Definition 6 Given an interval-valued decision information
system IS = (U, AT ∪ DT, F, G), a neighborhood
threshold δ, an attribute subset B ⊆ AT and an attribute
ai ∈ AT − B, the external significance of ai relative to B

under DT is defined as

EXS(ai, B, DT ) = γ δ
B∪ai

(DT ) − γ δ
B(DT ). (27)

Similarly, according to formulas (22) and (23), we have
0 ≤ EXS(ai, B, DT ) ≤ 1. ai is not an external necessary
attribute relative to B if EXS(ai, B, DT ) = 0; then, ai

cannot be added toB. In addition, ai is an external necessary
attribute relative to B if EXS(ai, B, DT ) > 0.

To obtain one attribute subset characterizing the samples
while simultaneously controlling the attribute size, two
greedy searches strategies are proposed: forward search and
backward search. In the forward search stage, attributes
whose corresponding external significance are greater
than zero are added to the candidate attribute subset.
During backward searching, attributes that serve as internal
unnecessary attributes are removed from the candidate
attribute subset. Moreover, to continue the forward search
smoothly, γ δ

B(DT ) is ruled 0 if B is an empty set. Details
about the feature selection algorithm found on the interval-
valued-based weighted neighborhood rough set (IVWNRS)
are shown in Algorithm 1. In Algorithm 1, there is an
unknown parameter affecting the size of the information
granules, which needs to be set in advance. Ordinarily, δ

is set by the prior knowledge of experts or the result of an
isometric search. In the experimental section, we show how
to search the appropriate value for the threshold δ.

It is not hard to find that the interval-valued-based
weighted neighborhood similarity relation plays an impor-
tant role in interval-valued-based weighted neighborhood
rough set theory. As the core of the interval-valued-based
weighted neighborhood similarity relation, the Jaccard dis-
tance between x and y (∀x, y ∈ U ) is viewed as a basic
operation, and then the time complexity of the feature selec-
tion algorithm in the worst case can be further calculated.
In steps 1-2, the initial state of RED is an empty set, and
the weights of all conditional attributes are calculated with
time complexity ignored. Steps 3-15 describe the sequen-
tial forward search of the feature selection algorithm by
adding attributes to RED. For each cycle, we need to cal-
culate |U/DT ||U |2(1+ |AT − RED|) times, and there are
|AT | cycles at most. In this situation, the time complex-
ity from 3-15 is O(|U/DT ||U |2|AT |2) in all. After for-
ward searching, there may be redundant attributes in RED,
so steps 16-23 are devoted to removing these attributes.

Through our calculation, the time complexity in this part is
O(|RED||U/DT ||U |2). In summary, the time complexity
of this feature selection algorithm isO(|U/DT ||U |2|AT |2).

Example 2 Further considering Example 1 in terms of
feature selection after using the weighted method, we set
η = 0.5 and neighborhood threshold δ = 0.2. According
to Definition 4, it can be calculated that γ 0.2{a1,a2,a3,a4,a5,a6,a7}
(DT ) = 1 and γ 0.2{a5}(DT ) = 1. Obviously, there is no
redundant attribute in attribute subset {a5}. Therefore, {a5}
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is one reduct inExample 1. The result is consistent with that
of the feature selection algorithm, but it has low efficiency.
In the feature selection algorithm, we directly obtain the
result {a5} without considering each suspected attribute
subset.

6 Numerical experiment

In this section, we design a series of experiments to verify the
effectiveness and robustness of the proposed IVWNRS algo-
rithm. Emphasizing the importance of the attribute weights,
the interval-valued based weighted neighborhood rough
set(IVWNRS) is compared with the interval-valued based
neighborhood rough set (IVNRS), local neighborhood rough
set [40], distance measure based fuzzy rough set(AVDP)
[39] (the parameter γ is set 0.005), multigranularity attribute
selector(MGAS) [22], bucket and attribute group based neigh-
borhood rough set(BAGR) [4] and multilevel neighborhood-
based sequential three-way decision(MNS3WD) [44] (we
only consider the horizontal granularity based on γ and set
the decision thresholds (α, β) in (0.15,0.3) and (0,0.15)).
Furthermore, to show the importance of employing interval-
valued information comprehensively and assigning weights
to attributes, the compared algorithms are carried out in
datasets with real forms using the geometry average interval
sorting method. Influenced by magnitude, these datasets are
normalized into [0,1].

To make the result more persuasive, we compare the
feature selection methods from two aspects: 1) the clas-
sification accuracies under different classifiers and 2) the
number of selected attributes. All algorithms are executed in
Jupyter Notebook 5.0.0 and MATLAB R2018a and run in a

Fig. 3 CCBR

hardware environment with an Inter(R) Core(TM) i5-9300H
CPU @2.40 GHz with 8.00GB RAM.

In classification ability, we use KNN (ruled k=3) and
SVM (with default parameters) classifiers to evaluate
the performance of these algorithms. Fifteen datasets
downloaded from the UCI machine learning repository are
tested, and their details are described in Table 6. Since the
dataset values are all real numbers, we construct interval-
valued datasets by multiplying error precision α. Then,
f (x, a)(∀x ∈ U, ∀a ∈ AT ), the value of object x under
attribute a can be expressed as [(1 − α) × f (x, a), (1 +
α) × f (x, a)]. Specifically, when f (x, a) ≤ 0, we have
[(1+α)×f (x, a), (1−α)×f (x, a)]. In this paper, we set the
error precision α = 0.05. To eliminate as many accidental
errors as possible, 10-fold cross validation is employed to

Table 6 Data description
Datasets Abbreviation Samples Attributes Labels

Cervical Cancer Behavior Risk CCBR 72 19 2
Data for Software Engineering Teamwork
Assessment in Education Setting DSETAES 74 109 2
Tae Tae 151 5 3
Ultrasonic Flowmeter Diagnostics UFD 179 44 4
Haberman Haberman 306 3 2
Ionosphere Ionosphere 351 34 2
Whole Scale Customers WSC 440 7 3
Wdbc Wdbc 569 31 2
Hill-Valley HV 606 100 2
Blood Transfusion Service Center BTSC 748 4 2
Contraceptive Method Choice CMC 1473 8 2
Wireless Indoor Localization WIL 2000 7 4
Estimation of Obesity Levels based on
Eating Habits and Physical Condition EOLEHPC 2111 16 7
Electrical Grid Stability Simulated EGSS 10000 13 2
A141 2020 Predictive Maintenance APM 10000 14 3



Feature selection using a weighted method...

Fig. 4 DSETAES

Fig. 5 Tae

Fig. 6 UFD

Fig. 7 Haberman

Fig. 8 Ionosphere

Fig. 9 WSC
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Fig. 10 Wdbc

Fig. 11 HV

Fig. 12 BTSC

Fig. 13 CMC

Fig. 14 WIL

Fig. 15 EOLEHPC
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Table 7 Classification accuracies of different algorithms with KNN

Datasets Row Data IVWNRS IVNRS LCER AVDP MGAS BAGR MNS3WD

CCBR 0.904 0.916 0.891 0.766 0.620 0.823 0.821 0.773
DSETAES 0.575 0.623 0.566 0.568 0.595 0.595 0.489 0.514
Tae 0.517 0.543 0.444 0.470 0.411 0.510 0.470 0.411
UFD 0.848 0.833 0.760 0.850 0.594 0.844 0.872 0.522

Haberman 0.687 0.657 0.687 0.690 0.684 0.690 0.690 0.480
Ionosphere 0.860 0.874 0.494 0.754 0.520 0.520 0.843 0.706
WSC 0.600 0.602 0.598 0.600 0.655 0.600 0.600 0.655
Wdbc 0.974 0.928 0.903 0.945 0.847 0.995 0.951 0.613
HV 0.548 0.500 0.492 0.548 0.490 0.548 0.550 0.474
BTSC 0.739 0.740 0.749 0.742 0.689 0.742 0.742 0.677
CMC 0.593 0.604 0.605 0.597 0.425 0.597 0.597 0.539
WIL 0.988 0.976 0.976 0.979 0.551 0.987 0.984 0.750
EOLEHPC 0.795 0.924 0.924 0.783 0.136 0.905 0.820 0.172
EGSS 0.901 1.000 1.000 0.952 0.549 0.901 0.951 0.606
APM 0.502 0.485 0.485 0.502 0.455 0.502 0.502 0.464
Average 0.735 0.747 0.705 0.716 0.548 0.717 0.725 0.557

evaluate the performance of these algorithms. The dataset is
divided into 10 pieces: one piece is chosen as the testing set,
and the remaining pieces are used as the training set. During
the training stage, we use a feature selection algorithm to
select attributes; then, in the testing stage, the classification
accuracies of KNN and SVM can be calculated under the
selected attributes. After ten cycles, the final classification
accuracies of KNN and SVM can be acquired by calculating
the corresponding average classification accuracy. To make
the comparison among different models more objective, we
set the parameters in advance. η in the geometry average
interval sorting method is set to 0.5 with a moderate attitude.

Table 8 Classification accuracies of different algorithms with SVM

Datasets Row Data IVWNRS IVNRS LCER AVDP MGAS BAGR MNS3WD

CCBR 0.904 0.889 0.877 0.695 0.707 0.807 0.877 0.761
DSETAES 0.555 0.500 0.457 0.498 0.457 0.457 0.575 0.543
Tae 0.516 0.530 0.436 0.476 0.358 0.516 0.476 0.312
UFD 0.653 0.776 0.497 0.617 0.472 0.617 0.606 0.528
Haberman 0.719 0.735 0.719 0.719 0.733 0.719 0.719 0.735

Ionosphere 0.934 0.851 0.640 0.802 0.640 0.640 0.903 0.749
WSC 0.718 0.718 0.718 0.718 0.718 0.718 0.718 0.718
Wdbc 0.979 0.923 0.910 0.960 0.866 0.995 0.960 0.624
HV 0.498 0.485 0.493 0.498 0.500 0.498 0.498 0.497
BTSC 0.763 0.765 0.760 0.763 0.763 0.763 0.763 0.762
CMC 0.633 0.635 0.639 0.633 0.599 0.633 0.633 0.622
WIL 0.982 0.975 0.975 0.980 0.640 0.983 0.984 0.780
EOLEHPC 0.816 0.913 0.913 0.844 0.169 0.911 0.863 0.307
EGSS 0.982 0.998 0.998 0.992 0.638 0.982 0.990 0.685

APM 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600

Average 0.750 0.753 0.709 0.720 0.591 0.723 0.744 0.615

We search neighborhood threshold δ from 0.05 to 0.5
with steps 0.05 and find the optimal δ when it performs
relatively well on all datasets under both KNN and SVM by
IVWNRS. The search result under thirteen datasets shows
that δ = 0.05 can satisfy our requirements in most cases, as
shown in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15.
It must be stated that isometric research is used in thirteen
datasets instead of fifteen because the remaining datasets
require such a long time to explore that we are unable to
afford the time. Thus, the neighborhood radius of the two
datasets naturally depends on the thirteen datasets without
searching step by step.
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Table 9 Number of selected features

Datasets IVWNRS IVNRS LCER AVDP MGAS BAGR MNS3WD

CCBR 2.90 2.80 2.70 3.90 4.80 3.30 1.00

DSETAES 1.00 1.00 1.00 1.00 1.00 3.90 1.00

Tae 3.90 3.30 4.00 1.00 5.00 4.00 1.00

UFD 3.00 1.00 34.10 1.00 42.10 13.10 1.00

Haberman 2.00 3.00 3.00 1.00 3.00 3.00 1.00

Ionosphere 2.00 1.00 1.00 1.00 1.00 5.00 1.00

WSC 2.00 2.00 7.00 1.00 7.00 7.00 1.00

Wdbc 2.00 2.00 5.00 1.00 30.10 5.10 1.00

HV 2.00 2.00 100.00 1.00 100.00 95.60 1.00

BTSC 1.60 3.00 4.00 1.00 4.00 4.00 1.00

CMC 7.00 6.90 8.00 1.00 8.00 8.00 1.00

WIL 4.00 4.00 6.00 1.00 7.00 6.00 1.00

EOLEHPC 4.90 4.90 7.80 1.00 16.00 7.40 1.00

EGSS 1.50 1.50 5.00 1.00 12.00 5.20 1.00

APM 2.00 2.00 7.80 1.00 11.00 7.80 1.00

Average 2.79 2.69 13.09 1.19 16.79 11.89 1.00

The classification accuracies of the row data and the
seven feature selection algorithms under KNN and SVM
are displayed in Tables 7 and 8, where the best perfor-
mance is highlighted in bold and underlined over different
feature selection algorithms. Compared with the average
accuracy of the raw data, IVWNRS improved by 1.2% and
0.3% with KNN and SVM, other algorithms were slightly
inferior to the raw data, AVDP declined by 18.7% and
15.9% andMNS3WD declined by 17.8% and 13.5%. As the
improved IVNRSmodel, the performance of IVWNRS with

KNN and SVM improved by 4.2% and 4.4%, respectively,
after solving the defect of IVNRS. Evidently, for classifi-
cation accuracies, IVWNRS performs best in most cases.
Therefore, we can conclude that IVWNRS improves the
classification ability by compensating for the IVNRS short-
comings based on utilizing the pivotal information of the
raw data (Table 9).

Average accuracy alone may not evaluate the perfor-
mances of the algorithms completely mentioned above, so
the hypothesis test is employed to describe their significant

Table 10 Rank of the seven algorithms with KNN

Datasets IVWNRS IVNRS LCER AVDP MGAS BAGR MNS3WD

CCBR 1 2 6 7 3 4 5

DSETAES 1 5 4 2.5 2.5 7 6

Tae 1 5 3.5 6.5 2 3.5 6.5

UFD 4 5 2 6 3 1 7

Haberman 6 4 2 5 2 2 7

Ionosphere 1 7 3 5.5 5.5 2 4

WSC 3 7 5 1.5 5 5 1.5

Wdbc 4 5 3 6 1 2 7

HV 4 5 2.5 6 2.5 1 7

BTSC 5 1 3 6 3 3 7

CMC 2 1 4 7 4 4 6

WIL 4.5 4.5 3 7 1 2 6

EOLEHPC 1.5 1.5 5 7 3 4 6

EGSS 1.5 1.5 3 7 5 4 6

APM 4.5 4.5 2 7 2 2 6

Average 3.89 2.82 3.50 5.71 3.04 3.18 5.86
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Table 11 Rank of the seven algorithms with SVM

Datasets IVWNRS IVNRS LCER AVDP MGAS BAGR MNS3WD

CCBR 1 2.5 7 6 4 2.5 5

DSETAES 3 6 4 6 6 1 2

Tae 1 5 3.5 6 2 3.5 7

UFD 1 6 2.5 7 2.5 4 5

Haberman 1.5 5.5 5.5 3 5.5 5.5 1.5

Ionosphere 2 6 3 6 6 1 4

WSC 4 4 4 4 4 4 4

Wdbc 4 5 2.5 6 1 2.5 7

HV 7 6 2 1 2 2 5

BTSC 1 7 2.5 2.5 2.5 2.5 6

CMC 2 1 4 7 4 4 6

WIL 4.5 4.5 3 7 2 1 6

EOLEHPC 1.5 1.5 5 7 3 4 6

EGSS 1.5 1.5 3 7 4 5 6

APM 4 4 4 4 4 4 4

Average 2.60 4.37 3.70 5.30 3.50 3.10 4.97

differences. First, we examine whether the seven algorithms
are significantly different from each other. Here we used the
Friedman test statistic, namely

χ2 = 12n

k(k + 1)

( k∑
i=1

r2i − k(k + 1)2

4

)
(28)

F = (N − 1)χ2

N(k − 1) − χ2
(29)

where ri is the average ordering of the i − th algorithm, N
is the number of datasets and k is the number of algorithms.
The variable F represents the F distribution with k − 1 and
(k−1)(N−1) freedom. Generally, we conduct the Friedman
test at a 90% significance level and set the null hypothesis
that these algorithms have no significant differences. If the
value of the Friedman statistic is more than the critical
value F(6, 84) = 1.8455, we can conclude that there are
significant differences among these algorithms; otherwise,
they are indistinguishable.

Tables 10 and 11 show the orderings of the seven
algorithms under KNN and SVM. Following the Friedman
statistic, we obtain F = 7.9049 under KNN and
F = 1.1559 under SVM. Obviously, there are significant
differences under KNN, while the seven algorithms are
recognized as equivalent under SVM.

Now that the algorithms with KNN have significant
differences, we have to proceed with the Nemenyi test under
KNN as a post hoc test. In this case, any pair of algorithms
can be recognized as significantly different if the distance
between the average ordering values exceeds the critical
value, where the critical value can be calculated as

CDα = qα

√
k(k + 1)

6N
(30)

From [6], we obtain that q0.1 = 2.693 when k = 7 and
α = 0.1. Therefore, we use CD0.1 = 2.1243 in this paper.

Supported by Table 10, we can calculate the distance
between the average orderings of any pair of algorithms.
Through calculation, we find that the distances between the

Fig. 16 A comprehensive
comparison among all
algorithms

(a) (b)
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average orderings of IVWNRS to AVDP and MNS3WD are
2.8667 and 2.9333 respectively. Consequently, IVWNRS
is significantly better than AVDP and MNS3WD under
KNN. However, the distance between IVWNRS and other
algorithms is less than 2.1243, which means that they have
no significant differences.

In addition to the classification accuracy, the size of the
selected attributes makes up an important part of feature
selection. The purpose of feature selection is to find a set
of relatively few and informative condition attributes. The
average size of the selected attributes with 10-fold cross
validation is shown in Table 9. In Table 9, we can see that
IVWNRS is only slightly inferior to IVNRS, AVDP and
MNS3WD with 2.79 attributes selected.

To make the comparison independent of any single iso-
lated aspect, a comprehensive comparison seems inevitable
combined with the performance and size of the selected
attributes. As shown in Fig. 16, in the number of selected
attributes, AVDP and MNS3WD select relatively fewer
attributes, while in performance, they all have low accu-
racies. At its root, such a situation is ascribed to their
inappropriate choices of attributes. Although the size of
selected attributes of IVWNRS is in the middle among all
algorithms, it is capable of classification tasks. In general,
unlike any other algorithm, IVWNRS can select relatively
few conditional attributes with discernment information to
obtain satisfactory classification performance.

7 Conclusion and future work

Through our study and experiments, we found that remov-
ing redundant attributes in datasets can improve classifi-
cation ability with less storage space. However, problems
exist in interval-valued-based datasets by using other state-
of-the-art feature selection methods. On the one hand,
these algorithms overlooking the importance of the attribute
weights makes them miss the indispensable attributes. On
the other hand, their direct use of real-valued datasets
converted from interval-valued causes a lack of informa-
tion. Aimed at such defects, we introduced the weighted
method by calculating the η−degree of preference coeffi-
cient of attributes into neighborhood relations to measure
the interval-valued-based weighted neighborhood rough set
(IVWNRS). The neighborhood relations were calculated by
interval processing methods such as Jaccard distance. To
evaluate the significance of attribute subsets, the depen-
dency degree was used. Finally, a greedy search based on
feature selection in IVWNRS was designed to find one min-
imal attribute subset with high relevance and dependence
on decisions. Experimental results show that IVWNRS
can accomplish classification tasks compared to other
state-of-the-art methods.

This paper focuses on the correlation coefficient between
attributes and decisions, but the correlation coefficient is
determined by decision preference to a large extent, and
the correlation coefficient between attributes is not fully
mined. In the future, the correlation coefficient between
interval-valued attributes and real-valued decisions needs
further study. Simultaneously, attributes will be assigned
to different weights after analyzing the correlation coef-
ficient between attributes. Other measures of uncertainty
addressing interval values can also be considered to improve
classification accuracy.
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